25.9.2
This website uses cookies to ensure you get the best experience on our website. Learn more

MLOps with Data Version Control: Getting Started

Skillsoft issued completion badges are earned based on viewing the percentage required or receiving a passing score when assessment is required. Data Version Control (DVC) is a technology that simplifies and enhances data versioning and management. It provides Git-like capabilities to track, share, and reproduce changes in data while optimizing storage and facilitating collaboration in data-centric projects. In this course, you will discover how DVC simplifies the intricate components of ML projects – code, configuration files, data, and model artifacts. Next, you will embark on hands-on DVC exploration by installing Git locally and establishing a remote repository on GitHub. Then you will install DVC, set up a local repository, configure DVC remote storage, and add and track data using DVC. Finally, you will create Python-based machine learning (ML) models and track them with DVC and Git integration. You will create metafiles pointing to DVC-stored data and artifacts and commit these files to GitHub, tagging different model and data versions. Through Git tags, you will access specific model iterations for your work. This course will empower you with theoretical insights and practical proficiency in employing DVC and Git.

Issued on

September 9, 2024

Expires on

Does not expire