25.8.20
This website uses cookies to ensure you get the best experience on our website. Learn more

Machine & Deep Learning Algorithms: Data Preparation in Pandas ML

Skillsoft issued completion badges are earned based on viewing the percentage required or receiving a passing score when assessment is required. Classification, regression, and clustering are some of the most commonly used machine learning (ML) techniques and there are various algorithms available for these tasks. In this 10-video course, learners can explore their application in Pandas ML. First, examine how to load data from a CSV (comma-separated values) file into a Pandas data frame and prepare the data for training a classification model. Then use the scikit-learn library to build and train a LinearSVC classification model and evaluate its performance with available model evaluation functions. You will explore how to install Pandas ML and define and configure a ModelFrame, then compare training and evaluation in Pandas ML with equivalent tasks in scikit-learn. Learn how to build a linear regression model by using Pandas ML. Then evaluate a regression model by using metrics such as r-square and mean squared error, and visualize its performance with Matplotlib. Work with ModelFrames for feature extraction and encoding, and configure and build a clustering model with the K-Means algorithm, analyzing data clusters to determine unique characteristics. Finally, complete an exercise on regression, classification, and clustering.

Issued on

November 26, 2021

Expires on

Does not expire